slope = 5/2. Step-by-step explanation: This equation is written in slope intercept form. y = mx+b where m is the slope and b is the y intercept. y = 5/2x -3. The slope is 5/2 and the y intercept is -3 Combining like terms leads to the expression 6x + 11, which is equal to the right-hand side of the differential equation. This result verifies that y = e − 3x + 2x + 3 is a solution of the differential equation. Exercise 8.1.1. Verify that y = 2e3x − 2x − 2 is a solution to the differential equation y′ − 3y = 6x + 4. Finding the slope parallel to this line means finding the slope of this line, since parallel lines are defined as lines with the same slope! In this case the slope is m= −32 2x+5y=4 Geometric figure: Straight Line Slope = -0.800/2.000 = -0.400 x-intercept = 4/2 = 2 y-intercept = 4/5 = 0.80000 Rearrange: Rearrange the equation by If 7x -15y = 4x + y , find the value of x : y. Hence, use componendo and dividendo to find the values of : (i) 9 x + 5 y 9 x − 5 y (ii) 3 x 2 + 2 y 2 3 x 2 − 2 y 2 Algebra. Find the Slope and y-intercept 2x-y=5. 2x − y = 5 2 x - y = 5. Rewrite in slope-intercept form. Tap for more steps y = 2x− 5 y = 2 x - 5. Use the slope-intercept form to find the slope and y-intercept. menyiasati posisi rumah lebih rendah dari jalan. Algebra Examples Rewrite in slope-intercept slope-intercept form is , where is the slope and is the the slope-intercept form to find the slope and the values of and using the form .The slope of the line is the value of , and the y-intercept is the value of .Slope: y-intercept: Any line can be graphed using two points. Select two values, and plug them into the equation to find the corresponding a table of the and the line using the slope and the y-intercept, or the y-intercept: Wskaż równanie prostej przechodzącej przez początek układu współrzędnych i prostopadłej do prostej o równaniu \(y=-\frac{1}{3}x+2\). A.\( y=3x \) B.\( y=-3x \) C.\( y=3x+2 \) D.\( y=\frac{1}{3}x+2 \) AProsta \(l\) ma równanie \(y = -7x + 2\). Równanie prostej prostopadłej do \(l\) i przechodzącej przez punkt \(P = (0, 1)\) ma postać A.\( y=7x-1 \) B.\( y=7x+1 \) C.\( y=\frac{1}{7}x+1 \) D.\( y=\frac{1}{7}x-1 \) CPunkt \(A=(0,5)\) leży na prostej \(k\) prostopadłej do prostej o równaniu \(y = x + 1\). Prosta \(k\) ma równanie A.\( y=x+5 \) B.\( y=-x+5 \) C.\( y=x-5 \) D.\( y=-x-5 \) BNapisz równanie prostej równoległej do prostej o równaniu \(-3x+y-4=0\) i przechodzącej przez punkt \(P=(-1,-4)\).\(y=3x-1\)Prosta \(k\) ma równanie \(y=2x-3\). Wskaż równanie prostej \(l\) równoległej do prostej \(k\) i przechodzącej przez punkt \(D\) o współrzędnych \((-2,1)\). A.\( y=-2x+3 \) B.\( y=2x+1 \) C.\( y=2x+5 \) D.\( y=-x+1 \) CProstą prostopadłą do prostej \( y=\frac{1}{2}x-1 \) i przechodzącą przez punkt \( A=(1,1) \) opisuje równanie A.\(y=2x-1 \) B.\(y=\frac{1}{2}x+\frac{1}{2} \) C.\(y=-\frac{1}{2}x+\frac{1}{2} \) D.\(y=-2x+3 \) DDana jest prosta \(l\) o równaniu \(y=-\frac{2}{5}x\). Prosta \(k\) równoległa do prostej \(l\) i przecinająca oś \(Oy\) w punkcie o współrzędnych \((0,3)\) ma równanie A.\( y=-0{,}4x+3 \) B.\( y=-0{,}4x-3 \) C.\( y=2{,}5x+3 \) D.\( y=2{,}5x-3 \) A Niech będą dane dwie proste: \[y=a_1x+b_1\] oraz \[y=a_2x+b_2\] Proste są równoległe, jeżeli ich współczynniki kierunkowe są równe, czyli: \[a_1=a_2\] Proste są prostopadłe, jeżeli ich współczynniki kierunkowe spełniają zależność: \[a_1\cdot a_2=-1\]Prosta o równaniu \(y=\frac{2}{m}x+1\) jest prostopadła do prostej o równaniu \(y=-\frac{3}{2}x-1\). Stąd wynika, że A.\( m=-3 \) B.\( m=\frac{2}{3} \) C.\( m=\frac{3}{2} \) D.\( m=3 \) DProsta \(l\) ma równanie \(y=-\frac{1}{4}x+7\). Wskaż równanie prostej prostopadłej do prostej \(l\). A.\( y=\frac{1}{4}x+1 \) B.\( y=-\frac{1}{4}x-7 \) C.\( y=4x-1 \) D.\( y=-4x+7 \) CProstymi równoległymi są wykresy funkcji liniowych: A.\( y=\frac{4}{3}x+5\ \) i \(\ y=-\frac{3}{4}x+5\) B.\( y=\frac{4}{3}x+5\ \) i \(\ y=-\frac{4}{3}x+5\) C.\( y=\frac{4}{3}x+5\ \) i \(\ y=\frac{3}{4}x-5\) D.\( y=\frac{4}{3}x+5\ \) i \(\ y=\frac{4}{3}x-5\) DProste \(y=-3x+4\) i \(y=\left ( \frac{1}{3}a^2-\frac{4}{3} \right )x\) są prostopadłe, jeżeli A.\( a=-2\ \) lub \(\ a=2\) B.\( a=2 \) C.\( a=\sqrt{5} \) D.\( a=-\sqrt{5}\ \) lub \(\ a=\sqrt{5}\) DProstą przechodzącą przez punkt \(A = (1,1)\) i równoległą do prostej \(y=0{,}5x-1\) opisuje równanie A.\( y=-2x-1 \) B.\( y=\frac{1}{2}x+\frac{1}{2} \) C.\( y=-\frac{1}{2}x+\frac{1}{2} \) D.\( y=2x-1 \) BProste \(l\) i \(k\) są prostopadłe i \(l{:}\ 2x-9y+6=0,\ k{:}\ y=ax+b\). Wówczas: A.\( a=-\frac{2}{9} \) B.\( a=\frac{2}{9} \) C.\( a=-\frac{9}{2} \) D.\( a=\frac{9}{2} \) CProsta prostopadła do prostej \(l\) o równaniu \(4x-5y+6=0\) ma wzór: A.\( y=-\frac{1}{5}x+b \) B.\( y=-\frac{1}{4}x+b \) C.\( y=-\frac{4}{5}x+b \) D.\( y=-\frac{5}{4}x+b \) DWskaż równanie prostej prostopadłej do prostej o równaniu \(2x-4y=5\). A.\( y=\frac{1}{2}x \) B.\( y=-\frac{1}{2} \) C.\( y=2x \) D.\( y=-2x \) DWspółczynnik kierunkowy prostej równoległej do prostej o równaniu \(y = -3x + 5\) jest równy A.\( -\frac{1}{3} \) B.\( -3 \) C.\( \frac{1}{3} \) D.\( 3 \) BWskaż równanie prostej równoległej do prostej o równaniu \( 3x-6y+7=0 \) A.\(y=\frac{1}{2}x \) B.\(y=-\frac{1}{2}x \) C.\(y=2x \) D.\(y=-2x \) AWyznacz wszystkie parametry \(m\) dla których prosta o równaniu \(y = (m - 1)x + 5\) jest rosnąca równoległa do prostej \(y = -6x + 3\) a) \(m\gt 1\) b) \(m=-5\)Wyznacz wszystkie parametry \(m\) dla których prosta o równaniu \(y = (3 - 2m)x + 5\) jest malejąca prostopadła do prostej \(y = 2x-3\) a) \(m\gt \frac{3}{2}\) b) \(m=\frac{7}{4}\)Proste o równaniach \(y=2x-5\) i \(y=(3-m)x+4\) są równoległe. Wynika stąd, że A.\( m=1 \) B.\( m=\frac{5}{2} \) C.\( m=\frac{7}{2} \) D.\( m=5 \) AWskaż równanie prostej równoległej do prostej o równaniu \( y=2x-7 \). A.\(y=-2x+7 \) B.\(y=-\frac{1}{2}x+5 \) C.\(y=\frac{1}{2}x+2 \) D.\(y=2x-1 \) DKtóre z poniższych równań opisuje prostą prostopadłą do prostej o równaniu \( y=4x+5 \). A.\(y=-4x+3 \) B.\(y=-\frac{1}{4}x+3 \) C.\(y=\frac{1}{4}x+3 \) D.\(y=4x+3 \) BNapisz równanie prostej równoległej do prostej o równaniu \(2x-y-11=0\) i przechodzącej przez punkt \(P=(1,2)\).\(y=2x\)Wybierz i zaznacz równanie opisujące prostą prostopadłą do prostej o równaniu \(y=\frac{1}{2}x+1\). A.\( y=-2x+1 \) B.\( y=0{,}5x-1 \) C.\( y=-\frac{1}{2}x+1 \) D.\( y=2x-1 \) AProsta \(l\) ma równanie \(y=2x-11\). Wskaż równanie prostej równoległej do \(l\). A.\( y=2x \) B.\( y=-2x \) C.\( y=-\frac{1}{2}x \) D.\( y=\frac{1}{2}x \) AProsta \(l\) ma równanie \(y=2x-11\). Wskaż równanie prostej prostopadłej do \(l\). A.\( y=2x \) B.\( y=-2x \) C.\( y=-\frac{1}{2}x \) D.\( y=\frac{1}{2}x \) CProsta \(l\) ma równanie \(2y-x=4\). Wskaż równanie prostej równoległej do \(l\). A.\( y=2x \) B.\( y=-2x \) C.\( y=-\frac{1}{2}x \) D.\( y=\frac{1}{2}x \) DProstą równoległą do prostej o równaniu \(y=\frac{2}{3}x-\frac{4}{3}\) jest prosta opisana równaniem A.\( y=-\frac{2}{3}x+\frac{4}{3} \) B.\( y=\frac{2}{3}x+\frac{4}{3} \) C.\( y=\frac{3}{2}x-\frac{4}{3} \) D.\( y=-\frac{3}{2}x-\frac{4}{3} \) BProste o równaniach \(-3y - mx + 12 = 0\) oraz \(y = 6x - 12\) są prostopadłe dla \(m\) równego: A.\( \frac{1}{2} \) B.\( -18 \) C.\( -\frac{1}{2} \) D.\( 6 \) AWykresy funkcji liniowych \( f(x)=\frac{\sqrt{5}}{3}x+6 \) oraz \( g(x)=\frac{5}{3\sqrt{5}}x-\frac{1}{6} \) : prostopadłe się, ale nie są prostopadłe się równoległe, ale się nie pokrywają DDane są równania czterech prostych: Prostopadłe są proste: A.\(l\) i \( n \) B.\(l\) i \( m \) C.\(k\) i \( n \) D.\(k\) i \( m \) DRównania \( y=-\frac{3}{4}x+\frac{5}{4} \text{ oraz } y=-\frac{4}{3} \) opisują dwie proste się pod kątem o mierze \( 90 ^\circ \). się. się pod kątem różnym od \( 90 ^\circ \). i różne. CWskaż równanie prostej, która jest równoległa do prostej o równanie \(12x+4y+3=0\) A.\( y=12x \) B.\( y=-12x \) C.\( y=3x \) D.\( y=-3x \) DWyznacz wszystkie parametry \(m\) dla których proste \(y=(m^2+1)x-3\) oraz \(y=-\frac{1}{3}x+2m\) są prostopadłe.\(m=\sqrt{2}\) lub \(m=-\sqrt{2}\)Prosta \(l\) o równaniu \(y=m^2x+3\) jest równoległa do prostej \(k\) o równaniu \(y=(4m-4)x-3\). Zatem: A.\( m=2 \) B.\( m=-2 \) C.\( m=-2-2\sqrt{2} \) D.\( m=2+2\sqrt{2} \) AProste o równaniach: \(y=2mx-m^2-1\) oraz \(y=4m^2x+m^2+1\) są prostopadłe dla A.\( m=-\frac{1}{2} \) B.\( m=\frac{1}{2} \) C.\( m=1 \) D.\( m=2 \) APunkty \(A = (-3, 4)\) i \(C = (1,3)\) są wierzchołkami kwadratu \(ABCD\). Wyznacz równanie prostej zawierającej przekątną \(BD\) tego kwadratu.\(y=4x+\frac{15}{2}\) gdzie jesteś: Strona błędu Wybrana strona nie istnieje - prosimy o przejście do jednej ze stron z naszego menu. SolutionStep 1: Simplify the term algebraic equations which are valid for all values of variables in them are called algebraic identities. They are also used for the factorization of the algebraic identity a-b3=a3-b3-3aba-b to simplify the expression 2x-5y3:2x-5y3=2x3-5y3-32x5y2x-5y=8x3-125y3-30xy2x-5y=8x3-125y3-60x2y+150xy2∴2x-5y3=8x3-125y3-60x2y+150xy2Step 2: Simplify the term 2x+ the algebraic identity a+b3=a3+b3+3aba+b to simplify the expression 2x+5y3:2x+5y3=2x3+5y3+32x5y2x+5y=8x3+125y3+30xy2x+5y=8x3+125y3+60x2y+150xy2∴2x+5y3=8xStep 3: Simplify the given expression 2x-5y3-2x+5y3:Use the results obtained in Steps 1 and 2 to simplify the expression 2x-5y3-2x+5y3:2x-5y3-2x+5y3=8x3-125y3-60x2y+150xy2-8x3+125y3+60x2y+150xy2=8x3-125y3-60x2y+150xy2-8x3-125y3-60x2y-150xy2=8x3-8x3-125y3-125y3-60x2y-60x2y+150xy2-150xy2=-250y3-120x2yHence, 2x-5y3-2x+5y3= Corrections3

y 5 2x 3